Fast compressed sensing-based CBCT reconstruction using Barzilai-Borwein formulation for application to on-line IGRT.
نویسندگان
چکیده
PURPOSE Compressed sensing theory has enabled an accurate, low-dose cone-beam computed tomography (CBCT) reconstruction using a minimal number of noisy projections. However, the reconstruction time remains a significant challenge for practical implementation in the clinic. In this work, we propose a novel gradient projection algorithm, based on the Gradient-Projection-Barzilai-Borwein formulation (GP-BB), that handles the total variation (TV)-norm regularization-based least squares problem for the CBCT reconstruction in a highly efficient manner, with speed acceptable for routine use in the clinic. METHODS CBCT is reconstructed by minimizing an energy function consisting of a data fidelity term and a TV-norm regularization term. Both terms are simultaneously minimized by calculating the gradient projection of the energy function with the step size determined using an approximate Hessian calculation at each iteration, based on the Barzilai-Borwein formulation. To speed up the process, a multiresolution optimization is used. In addition, the entire algorithm was designed to run with a single graphics processing unit (GPU) card. To evaluate the performance, the Shepp-Logan numerical phantom, the CatPhan 600 physical phantom, and a clinically-treated head-and-neck patient were acquired from the TrueBeam™ system (Varian Medical Systems, Palo Alto, CA). For each scan, in total, 364 projections were acquired in a 200° rotation. The imager has 1024 × 768 pixels with 0.388 × 0.388-mm resolution. This was down-sampled to 512 × 384 pixels with 0.776 × 0.776-mm resolution for reconstruction. Evenly spaced angles were subsampled and used for varying the number of projections for the image reconstruction. To assess the performance of our GP-BB algorithm, we have implemented and compared with three compressed sensing-type algorithms, the two of which are popular and published (forward-backward splitting techniques), and the other one with a basic line-search technique. In addition, the conventional Feldkamp-Davis-Kress (FDK) reconstruction of the clinical patient data is compared as well. RESULTS In comparison with the other compressed sensing-type algorithms, our algorithm showed convergence in ≤30 iterations whereas other published algorithms need at least 50 iterations in order to reconstruct the Shepp-Logan phantom image. With the CatPhan phantom, the GP-BB algorithm achieved a clinically-reasonable image with 40 projections in 12 iterations, in less than 12.6 s. This is at least an order of magnitude faster in reconstruction time compared with the most recent reports utilizing GPU technology given the same input projections. For the head-and-neck clinical scan, clinically-reasonable images were obtained from 120 projections in 34-78 s converging in 12-30 iterations. In this reconstruction range (i.e., 120 projections) the image quality is visually similar to or better than the conventional FDK reconstructed images using 364 projections. This represents a dose reduction of nearly 67% (120∕364 projections) while maintaining a reasonable speed in clinical implementation. CONCLUSIONS In this paper, we proposed a novel, fast, low-dose CBCT reconstruction algorithm using the Barzilai-Borwein step-size calculation. A clinically viable head-and-neck image can be obtained within ∼34-78 s while simultaneously cutting the dose by approximately 67%. This makes our GP-BB algorithm potentially useful in an on-line image-guided radiation therapy (IGRT).
منابع مشابه
An efficient iterative CBCT reconstruction approach using gradient projection sparse reconstruction algorithm
The purpose of this study is to develop a fast and convergence proofed CBCT reconstruction framework based on the compressed sensing theory which not only lowers the imaging dose but also is computationally practicable in the busy clinic. We simplified the original mathematical formulation of gradient projection for sparse reconstruction (GPSR) to minimize the number of forward and backward pro...
متن کاملA Barzilai-Borwein $l_1$-Regularized Least Squares Algorithm for Compressed Sensing
Problems in signal processing and medical imaging often lead to calculating sparse solutions to under-determined linear systems. Methodologies for solving this problem are presented as background to the method used in this work where the problem is reformulated as an unconstrained convex optimization problem. The least squares approach is modified by an l1-regularization term. A sparse solution...
متن کاملFe b 20 09 Accelerating gradient projection methods for l 1 - constrained signal recovery by steplength selection rules
We propose a new gradient projection algorithm that compares favorably with the fastest algorithms available to date for l1-constrained sparse recovery from noisy data, both in the compressed sensing and inverse problem frameworks. The method exploits a line-search along the feasible direction and an adaptive steplength selection based on recent strategies for the alternation of the well-known ...
متن کاملVariable step size methods for solving simultaneous algebraic reconstruction technique (SART)-type CBCT reconstructions
Compared to analytical reconstruction by Feldkamp-Davis-Kress (FDK), simultaneous algebraic reconstruction technique (SART) offers a higher degree of flexibility in input measurements and often produces superior quality images. Due to the iterative nature of the algorithm, however, SART requires intense computations which have prevented its use in clinical practice. In this paper, we developed ...
متن کاملGPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation.
PURPOSE Cone-beam CT (CBCT) plays an important role in image guided radiation therapy (IGRT). However, the large radiation dose from serial CBCT scans in most IGRT procedures raises a clinical concern, especially for pediatric patients who are essentially excluded from receiving IGRT for this reason. The goal of this work is to develop a fast GPU-based algorithm to reconstruct CBCT from undersa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 39 3 شماره
صفحات -
تاریخ انتشار 2012